点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:永利彩票 - 永利彩票
首页>文化频道>要闻>正文

永利彩票 - 永利彩票

来源:永利彩票2024-03-27 17:48

  

首部《跨境数据流通合规与技术应用白皮书》发布******

  日前,“粤港澳大湾区国际人工智能与机器人高峰会2022”在香港、深圳、澳门三地以线上、线下相结合的方式举行,峰会由香港生产力促进局(生产力局)、深圳市发展和改革委员会、广东省人工智能与机器人学会、香港人工智能与机器人学会与澳门大湾区人工智能学会主办,以及深圳数据交易所、粤港澳大湾区大数据研究院、湾区数字科技联盟、开放群岛开源社区联合承办。

  香港创新科技及工业局局长和深圳市科技创新委员会领导,以及国际图灵奖得奖者、三十余名中外院士及专家、多位大湾区高校校长出席会议,或将成为粤港澳大湾区三地联合主办的最高层次的人工智能与机器人领域专业会议。

  会上,国家信息中心原党委书记、常务副主任,粤港澳大湾区大数据研究院名誉理事长杜平为《跨境数据流通合规与技术应用白皮书》致辞,联易融创始人、董事长兼CEO宋群作为主编单位代表出席发布仪式,并正式发布了由开放群岛开源社区跨境数据流通小组牵头,联易融、深数所、贵数所、粤港澳大湾区大数据研究院、中国电子、天翼电子、微众银行、顺丰科技、勤达睿、广和律所、大成律所、中伦律所、华东江苏大数据交易中心、星环科技、南方财经、雁联科技、九鑫智能、八分量等三十余家机构编写的国内首份《跨境数据流通合规与技术应用白皮书》。

  跨境数据流通成为推动新型全球化的新引擎

首部《跨境数据流通合规与技术应用白皮书》发布

  近年来,互联网、云计算、大数据、人工智能、区块链等新一代信息技术成果快速涌现,陆续进入到大规模快速实现商业转化的阶段。与此同时,在催生大批数字化企业、数字化业态、数字化应用场景的过程中,全球互联网协议流量以及全球数据量都呈现指数级增长势头。伴随着跨境数据在支持国际贸易活动、促进跨国技术合作、推动数据资源共享方面的作用愈发凸显,数据作为要素具有巨大价值已经成为国际共识,促进数据跨境流通及数字贸易,正成为推动新型全球化的新动力。

  2022年12月19日,国务院关于构建数据基础制度更好发挥数据要素作用的意见也指出,“深化开放合作,实现互利共赢。积极参与数据跨境流动国际规则制定,探索加入区域性国际数据跨境流动制度安排。推动数据跨境流动双边多边协商,推进建立互利互惠的规则等制度安排。鼓励探索数据跨境流动与合作的新途径新模式”,加强数据跨境流动的探索,成为我国在全球数字经济发展格局中的建立优势的关键。

  探索合法、合规、可落地的跨境数据流通技术解决方案

首部《跨境数据流通合规与技术应用白皮书》发布

  开放群岛开源社区跨境数据流通小组以助力企业合法、合规实现数据流通业务出海为目标,围绕着国内数据的出境、国外数据的入境以及第三国数据过境等领域,联合生态伙伴结合业务模式与技术能力推进合法合规可落地的技术解决方案。

  本份白皮书集领域内行业专家、法律专家、技术专家智慧,以跨境数据流通线下合规与线上技术解决方案相结合为特色,在研究数据出境接收国及地区的法律环境分析的基础之上,探索技术手段实现跨境数据的高效流转,是跨境数据技术解决方案的首次集中展现。白皮书系统剖析了我国在数据跨境流通领域的发展现状、难点和障碍;同时,全面梳理了美国、欧盟、日本、新加坡、中国香港、中国澳门等国家和地区在数据安全保护和数据跨境流通等方面的法律法规要求,为国内从事合规的从业人员提供相关素材的参考;还重点围绕金融、医疗、汽车、物流和跨境电商等行业,探索如何利用区块链、数据网关、隐私计算等最新技术,提出推进数据高效、合规跨境流动的技术解决方案。

  以粤港澳数据跨境为起点,参与全球数字经济浪潮

  近年来,粤港澳大湾区在经济贸易、投资融资、科技交流合作、人员往来等多个方面都开展广泛深入的合作且成效显著。面临新时代的新情况和新任务,如何以数据跨界流动来赋能粤港澳三地间人流、物流、资金流更加精准、便利、高效、安全地流通,提升大湾区整体的经贸合作和人文交流的效率和安全性,是三地政府管理部门、企业和市场服务机构的重大任务。

  尝试以粤港澳为样本,探索实践数据跨境流动的大湾区方案有利于我国在参与世界数据经济合作中积累经验并发挥重要作用,大湾区具有一国两制三地的中国特色,在数据跨境流通、基础制度体系建设、管理体制机制完善、标准规范和通用协议制定、数据安全流通技术应用等重大问题上先行先试,及时总结有效做法。不仅仅是大湾区三地的事情,对于中国积极主动参与国际数字贸易、世界数字经济技术合作和网络空间治理以及维护速度主权都具有十分重要的现实意义。(柯岩)

永利彩票

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

  (文图:赵筱尘 巫邓炎)

[责编:天天中]
阅读剩余全文(

相关阅读

视觉焦点

  • 蔡依林流“粉色眼泪”秀锁骨 网友:美貌在线索命

  • 原配捉奸反被告,现在"老王"这么牛?

独家策划

推荐阅读
永利彩票悲剧!土超球队遭遇车祸 数人受伤一人不幸遇难
2024-06-18
永利彩票望京4居满2年精装近百万
2023-12-30
永利彩票VIP4.3不怕贼惦记吴刚张馨予大漠夺金矿嘉宾:吴刚 张馨予 应采儿
2024-04-10
永利彩票女子遛狗变身“低头族” 一脚踩空掉入下水道
2023-09-11
永利彩票魔术师表演毫无破绽 看不出他竟是盲人
2023-10-19
永利彩票兵马俑手指在美被折断盗走
2024-02-20
永利彩票李彦宏夫妇或成"老赖"?一作家较真儿申请执行
2024-02-07
永利彩票致敬!消防员救完人 汗水冒白烟
2024-03-21
永利彩票佳兆业集团控股:未开发"佳兆业集团"app用于募资
2024-06-21
永利彩票机器人进入手术室,悬壶济世的时代来临?
2024-04-01
永利彩票越王勾践剑入“豪宅”参观火爆 新科技揭“千年不锈”之谜
2023-12-29
永利彩票阿里和蚂蚁金服押对了支付 但正错失印度电商良机
2024-02-11
永利彩票五一热门旅游城市晴雨表出炉 深圳成都雨水打卡四天
2024-05-23
永利彩票习近平绿色箴言妙喻美丽中国
2024-03-21
永利彩票变形计:杜华儿子人怂话多
2024-04-13
永利彩票90后摄影师镜头下的中国
2023-09-18
永利彩票 慈禧五代外孙女曝光,百年之后又见“慈禧”,网友:太像了
2024-02-07
永利彩票豪出新境界 宝马xDrive 40i M运动套装
2024-06-14
永利彩票曝中国新轻型坦克已批量服役
2024-02-21
永利彩票江西最后一座未开发的..
2024-07-19
永利彩票光明日报社2023年度高校应届毕业生招聘公告
2023-08-25
永利彩票 73岁儿子猎捕候鸟被抓 100岁老父亲:鸟吃粮食
2024-02-29
永利彩票愤怒的小鸟全新季投影戏表演受到大欢迎毛茸茸爆笑可爱蓝弟弟
2023-11-26
永利彩票“流动巴扎”带货忙
2024-05-31
加载更多
永利彩票地图